Presenting

DESCRIPTION

NEUROSKETCH *

Early Detection for Elderly Wellness

~ Gursimar Kaur Mohd. Nauman Ali Prajesh Neir

Our project introduces a **seamless Parkinson's detection model** for patients aged 60 and above, integrating AI-powered **voice**, **spiral, and motor assessments** into routine check-ups. This **enhances diagnosis accuracy**, enabling early intervention crucial for improving outcomes, providing **timely support**, **potentially slowing disease progression**, and **enhancing quality of life**.

INNOVATIVE USE OF AI TOOLS:

We judiciously made use of AI tools by carefully selecting and optimizing algorithms tailored to each assessment method in our Parkinson's detection model.

VOICE DETECTION

SPIRAL TEST

We utilized Support Vector Machine (SVM) models with 22 key features extracted from biomedical voice measurements, including fundamental frequency, variation in frequency and amplitudes. This enabled accurate classification of individuals as either healthy or having Parkinson's disease based on their voice	Al analyzes handwriting patterns to detect Parkinson's tremors, while computer vision algorithms extract features such as smoothness for objective motor function assessment. Additionally, they extract kinematic features from spiral drawings, including stroke characteristics and velocity, significantly	Al extracts subtle features from hand and foot movements indicative of Parkinson's symptoms, like tremors and slowness. Machine learning algorithms, such as DNNs, learn from these features to classify movements as Parkinson's-related or not, detecting patterns imperceptible to humans.
characteristics.	enhancing Parkinson's	

LEARNING EXPERIENCE:

Embarking on mastering Support Vector Machine (SVM) models, data processing, and handling unstructured audio files for classification, I engaged with a Skill Builder course and Engaging in personal discussions, I sought insights from AI experts and medical professionals. Overcoming challenges like Python decoding errors and complex research papers, I grew significantly in understanding AI. Moving forward, I aim to enhance Parkinson's detection by integrating new features into existing models

IMPACT:

NeuroSketch revolutionizes Parkinson's care with **smartphone video clips** for **objective symptom** tracking. Using cutting-edge **computer vision**, it offers precise analysis of tremors and bradykinesia. **Accessible on any mobile device**, it enables early diagnosis and personalized treatment.

MOTOR ASSESSMENTS

SCALABILITY:

NeuroSketch expands its reach via healthcare partnerships and app store presence, ensuring broad accessibility. Its cloud infrastructure allows for scalable growth while maintaining performance, ensuring financial viability.

CERTIFICATIONS/RECOGNITIONS:

As an individual, I have received certifications in the field of AI, including completion of advanced AI courses and participation in **AI hackathons**. Notably, I was selected for the prestigious **1M1B AI Future Tech Imagination Internship program**, representing one of the **top 20 finalists nationwide**. These experiences have equipped me with the knowledge and skills necessary to tackle complex healthcare challenges using AI technology.

VOICE Detection

Parkinson's disease **affects voice and speech production** due to vocal fold stiffness, reduced loudness, and altered rhythm and pitch. Common symptoms include **voice tremors, reduced loudness, and monotone speech**. These changes can be **quantified using acoustic features** from speech recordings.

0.025

0.030

02

The Kaggle dataset comprises **22 voice features**, such as **fundamental frequency**, **jitter, shimmer**, etc., from recordings of 31 individuals, 23 with Parkinson's disease.

SPIRAL TEST

features, the model analyzes the sketch data to predict if it indicates Parkinson's disease.

Output

The model has detected Parkinson Diseased , with Confidence Score: 85%.

Deploy

Confidence Scores on other classes:

 Class
 Confidence Score

 0
 Healthy
 15%

 1
 Parkinson
 85%

About NeuroSketch

Parkinson's disease is a neurodegenerative disorder that affects notor functions, leading to tremors, affness, and impaired movement. The

NeuroSketch

05

Prediction and Display:

preprocessed sketch to predict whether it indicates Parkinson's

disease, generating an output

(Parkinson's or healthy) and a **confidence score**. This result is

then displayed to the user,

prediction outcome and

confidence level.

providing information on the

that includes the detected class

The AI model processes the

Unveiling Parkinson's with Precision

Try drawing a Spiral and watch how an AI Model will detect the Parkinson Disease.

Warning: Do not click Submit Sketch button before drawing spiral on below Canvas.

MOTOR ASSESSMENTS

01

A **webcam-based** system tracks hand movements during a finger-tapping task. It uses AI to **analyze thumb, wrist, and index finger angles.** By removing noise, it calculates motor function features and severity scores. Participant images are published with consent.

02

We analyzed **47 finger-tapping features**, along with **18 wrist**

features, along with 18 wrist movement features, correlating them with severity scores. 22 features showed significant correlation, suggesting their potential as digital biomarkers. The top 10 features capture critical aspects of speed, amplitude, and rhythm, aligning with Parkinson's severity scoring guidelines.

03

- Calculate Finger-Tapping Angle
- Compute Finger-Tapping Speed
- Determine Finger-Tapping Acceleration
- Detect Peaks in Finger-Tapping Angles

We utilized a LightGBM

04

BUSINESS CANVA

KEY PARTNERS

- Healthcare Providers
- Technology Partners
- Device Manufacturers
- Research Institutions
- Regulatory Bodies

KEY ACTIVITIES:

- AI Development and Maintenance
- Data Collection and Analysis
- Partnership Management
- Training and Support
- Marketing and Outreach

KEY RESOURCES:

- AI Algorithms and Software
- Human Resources (AI specialists, developers)
- Financial Resources
- Intellectual Property

VALUE PROPOSITIONS:

- Early Detection of Parkinson's
- Accessibility in Routine Check-ups
- High Diagnostic Accuracy
- Convenient Tools (voice detection, spiral tests)
- Cost-effective Diagnosis

REVENUE STREAMS:

- Subscription Model
- One-time Purchase
- Licensing Technology
- Grants and Funding

CUSTOMER RELATIONSHIPS:

- Personal Assistance
- Automated Services
- Community Building

- Direct Sales to Healthcare Providers
- Online Platform/App
- Medical Conferences and Events
- Partnerships with Healthcare Organizations

CUSTOMER SEGMENTS:

- Healthcare Providers (hospitals, clinics)
- Patients (aged 60+)
- Caregivers

COST STRUCTURE:

- Research and Development
- Operational Costs (data storage, server maintenance)
- Marketing and Sales
- Partnership Management